# **EE105 Microelectronic Devices and Circuits**Module 4-5: Differential Amplifiers

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)





# **Two-Stage CMOS Op-Amp Circuit**







# **Two-Stage CMOS Op-Amp Circuit**



**Mirror Load** 



## **Two-Stage CMOS Op-Amp Circuit**



Voltage gain of the first stage  $(Q_1, Q_2)$ : Differential input, single-ended output:

$$A_1 = -g_{m1}(r_{o2} || r_{o4})$$

Voltage gain of the 2nd stage  $(Q_6)$ : Common source with current source load:

$$A_2 = -g_{m6} \left( r_{o6} \parallel r_{o7} \right)$$

Total gain

$$A_o = A_1 A_2$$





#### **Example:**



|              | Q1     | Q2     | Q3    | Q4    |
|--------------|--------|--------|-------|-------|
| W/L<br>in um | 20/0.8 | 20/0.8 | 5/0.8 | 5/0.8 |
|              |        |        |       |       |
|              | Q5     | Q6     | Q7    | Q8    |
| W/L<br>in um | 4/0.8  | 10/0.8 | 4/0.8 | 4/0.8 |

$$\begin{split} I_{REF} &= 90 \ \mu A, \ V_{tn} = 0.7 V, \ V_{tp} = -0.8 V \\ \mu_n C_{ox} &= 160 \ \mu A/V^2, \ \mu_p C_{ox} = 40 \ \mu A/V^2 \\ |V_A| &= 10 V \ for \ all \ devices \\ V_{DD} &= V_{SS} = 2.5 V \end{split}$$

Find  $I_D$ ,  $|V_{OV}|$ ,  $|V_{GS}|$ ,  $g_m$ ,  $r_o$  for all Q's, voltage gain, input common mode range, output voltage range.



#### **Solution: DC Parameters**



$$I_{REF} = 90 \mu A$$

$$I_{D5} = \frac{(W/L)_5}{(W/L)_8} = 90 \mu A$$

$$I_{D7} = \frac{(W/L)_7}{(W/L)_8} = 90 \mu A$$

$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = \frac{I_{D5}}{2} = 45 \mu A$$

$$I_{Di} = \frac{1}{2} \mu_i C_{ox} \left(\frac{W}{L}\right) |V_{OV}|^2$$

$$|V_{OV1}| = |V_{OV2}| = |V_{OV3}| = |V_{OV4}| = 0.3$$

$$|V_{OV5}| = |V_{OV6}| = |V_{OV7}| = |V_{OV8}| = 0.3$$

$$|V_{GS}| = |V_{OV}| + |V_t|$$
NMOS:  $|V_{GS}| = 0.3 + 0.7 = 1.0V$ 
PMOS:  $|V_{GS}| = 0.3 + 0.8 = 1.1V$ 





#### **Solution: AC Parameters**



$$g_{m} = \frac{2I_{D}}{|V_{OV}|}$$

$$g_{m1-4} = 2 \times 45 \mu A / 0.3V = 0.3 mA / V$$

$$g_{m5-8} = 2 \times 90 \mu A / 0.3V = 0.6 mA / V$$

$$r_{o} = \frac{|V_{A}|}{I_{D}}$$

$$r_{o1-4} = \frac{10V}{45 \mu A} = 222k\Omega$$

$$r_{o5-8} = \frac{10V}{90 \mu A} = 111k\Omega$$

$$A_{1} = -g_{m1}(r_{o2} \parallel r_{o4})$$

$$= -0.3 \times 222 / 2 = -33.3V / V$$

$$A_{2} = -g_{m6}(r_{o6} \parallel r_{o7})$$

$$= -0.6 \times 111 / 2 = -33.3V / V$$

$$A_{o} = A_{1}A_{2} = 1109V / V$$

 $= 20 \log(1109) = 61 dB$ 





# Solution: Input Common-Mode Ranges



Input common-mode voltage range:

Maximum: Q<sub>5</sub> near edge of saturation

$$|V_{DS5}| = |V_{OV5}| = 0.3V$$

$$v_{icm \, max} = 2.5 - |V_{OV5}| - |V_{GS5}|$$

$$= 2.5 - 0.3 - 1.1 = 1.1V$$

Minimum:  $Q_1$  near edge of saturation

$$v_{D1} = -V_{SS} + V_{GS3} = -2.5 + 1 = -1.5V$$

$$\left| v_{DS1} \right| = \left| v_{GS1} \right| - \left| v_{tp} \right|$$

$$-v_{DS1} = -v_{GS1} - 0.8$$

$$-v_{D1} = -v_{G1} - 0.8$$

$$v_{icm \min} = v_{G1} = v_{D1} - 0.8 = -2.3V$$





### **Solution: Output Ranges**



Output voltage range:

Maximum:  $Q_7$  near edge of saturation

$$\left|V_{OV7}\right| = 0.3V$$

$$v_{o \max} = 2.5 - |V_{OV7}| = 2.2V$$

Minimum: Q<sub>6</sub> near edge of saturation

$$v_{o \min} = -V_{SS} + |V_{OV6}| = -2.5 + 0.3 = -2.2V$$





# Folded-Cascode CMOS Op Amp.

(for inspection only)







# 741 Op-Amp Circuit





#### **Functions of Various Transistors**

- $Q_{11}$ ,  $Q_{12}$ , and  $R_5$  generate a reference bias current,  $I_{\text{REF}}$ .
- $Q_{10}$ ,  $Q_9$ , and  $Q_8$  bias the input stage, which is composed of  $Q_1$  to  $Q_7$ .
- The second gain stage is composed of  $Q_{16}$  and  $Q_{17}$  with  $Q_{13B}$  acting as active load.
- The class AB output stage is formed by  $Q_{14}$  and  $Q_{20}$  with biasing devices  $Q_{13A}$ ,  $Q_{18}$ , and  $Q_{19}$ , and an input buffer  $Q_{23}$ .
- Transistors  $Q_{15}$ ,  $Q_{21}$ ,  $Q_{24}$ , and  $Q_{22}$  serve to protect the amplifier against output short circuits and are normally cut off.

