EE105
 Microelectronic Devices and Circuits Module 4-5: Differential Amplifiers

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

Two-Stage CMOS Op-Amp Circuit

Cal
BSAC

Two-Stage CMOS Op-Amp Circuit

Current Mirrors

Two-Stage CMOS Op-Amp Circuit

Voltage gain of the first stage
$\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$: Differential input, single-ended output:
$A_{1}=-g_{m 1}\left(r_{o 2} \| r_{o 4}\right)$

Voltage gain of the 2nd stage $\left(\mathrm{Q}_{6}\right)$: Common source with current source load:

$$
A_{2}=-g_{m 6}\left(r_{o 6} \| r_{o 7}\right)
$$

Total gain
$A_{o}=A_{1} A_{2}$

Example:

	Q1	Q2	Q3	Q4
W/L in um	$20 / 0.8$	$20 / 0.8$	$5 / 0.8$	$5 / 0.8$

	Q5	Q6	Q7	Q8
W/L in um	$4 / 0.8$	$10 / 0.8$	$4 / 0.8$	$4 / 0.8$

$I_{\text {REF }}=90 \mu \mathrm{~A}, \quad \mathrm{~V}_{\text {tn }}=0.7 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{tp}}=-0.8 \mathrm{~V}$ $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=160 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=40 \mu \mathrm{~A} / \mathrm{V}^{2}$
$\left|\mathrm{V}_{\mathrm{A}}\right|=10 \mathrm{~V}$ for all devices
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=2.5 \mathrm{~V}$
Find $I_{D},\left|V_{o v}\right|,\left|V_{G s}\right|, g_{m}, r_{o}$ for all Q 's, voltage gain, input common mode range, output voltage range.

Solution: DC Parameters

$$
\begin{aligned}
& I_{R E F}=90 \mu \mathrm{~A} \\
& I_{D 5}=\frac{(\mathrm{W} / L)_{5}}{(W / L)_{8}}=90 \mu \mathrm{~A} \\
& I_{D 7}=\frac{(W / L)_{7}}{(W / L)_{8}}=90 \mu \mathrm{~A} \\
& I_{D 1}=I_{D 2}=I_{D 3}=I_{D 4}=\frac{I_{D 5}}{2}=45 \mu \mathrm{~A} \\
& I_{D i}=\frac{1}{2} \mu_{i} C_{o x}\left(\frac{W}{L}\right)\left|V_{O V}\right|^{2} \\
& \left|V_{O V 1}\right|=\left|V_{O V 2}\right|=\left|V_{O V 3}\right|=\left|V_{O V 4}\right|=0.3 \\
& \left|V_{O V 5}\right|=\left|V_{O V 6}\right|=\left|V_{O V 7}\right|=\left|V_{O V 8}\right|=0.3 \\
& \left|V_{G S}\right|=\left|V_{O V}\right|+\left|V_{t}\right| \\
& \text { NMOS : }\left|V_{G S}\right|=0.3+0.7=1.0 \mathrm{~V} \\
& \text { PMOS : }\left|V_{G S}\right|=0.3+0.8=1.1 \mathrm{~V}
\end{aligned}
$$

Solution: AC Parameters

$g_{m}=\frac{2 I_{D}}{\left|V_{O V}\right|}$
$g_{m 1-4}=2 \times 45 \mu \mathrm{~A} / 0.3 \mathrm{~V}=0.3 \mathrm{~mA} / \mathrm{V}$
$g_{m 5-8}=2 \times 90 \mu \mathrm{~A} / 0.3 \mathrm{~V}=0.6 \mathrm{~mA} / \mathrm{V}$
$r_{o}=\frac{\left|V_{A}\right|}{I_{D}}$
$r_{o l-4}=\frac{10 \mathrm{~V}}{45 \mu \mathrm{~A}}=222 \mathrm{k} \Omega$
$r_{o 5-8}=\frac{10 \mathrm{~V}}{90 \mu \mathrm{~A}}=111 \mathrm{k} \Omega$
$A_{1}=-g_{m 1}\left(r_{o 2} \| r_{o 4}\right)$
$=-0.3 \times 222 / 2=-33.3 \mathrm{~V} / \mathrm{V}$
$A_{2}=-g_{m 6}\left(r_{o 6} \| r_{o 7}\right)$
$=-0.6 \times 111 / 2=-33.3 \mathrm{~V} / \mathrm{V}$
$A_{o}=A_{1} A_{2}=1109 \mathrm{~V} / \mathrm{V}$
$=20 \log (1109)=61 d B$

Solution: Input Common-Mode Ranges

Input common-mode voltage range:
Maximum: Q_{5} near edge of saturation
$\left|V_{D S 5}\right|=\left|V_{O V 5}\right|=0.3 \mathrm{~V}$
$v_{\text {icm max }}=2.5-\left|V_{O V 5}\right|-\left|V_{G S 5}\right|$
$=2.5-0.3-1.1=1.1 \mathrm{~V}$
Minimum: Q_{1} near edge of saturation

$$
\begin{aligned}
& v_{D 1}=-V_{S S}+V_{G S 3}=-2.5+1=-1.5 \mathrm{~V} \\
& \left|v_{D S 1}\right|=\left|v_{G S 1}\right|-\left|v_{t p}\right| \\
& -v_{D S 1}=-v_{G S 1}-0.8 \\
& -v_{D 1}=-v_{G 1}-0.8 \\
& v_{i c m \min }=v_{G 1}=v_{D 1}-0.8=-2.3 \mathrm{~V}
\end{aligned}
$$

Solution: Output Ranges

Output voltage range:
Maximum: Q_{7} near edge of saturation
$\left|V_{\text {OV7 }}\right|=0.3 \mathrm{~V}$
$v_{o \text { max }}=2.5-\left|V_{O V 7}\right|=2.2 \mathrm{~V}$
Minimum: Q_{6} near edge of saturation
$v_{o \text { min }}=-V_{S S}+\left|V_{O V 6}\right|=-2.5+0.3=-2.2 \mathrm{~V}$

Folded-Cascode CMOS Op Amp. (for inspection only)

741 Op-Amp Circuit

BSAC

Functions of Various Transistors

- Q_{11}, Q_{12}, and R_{5} generate a reference bias current, $I_{\text {REF }}$ -
- Q_{10}, Q_{9}, and Q_{8} bias the input stage, which is composed of Q_{1} to Q_{7}.
- The second gain stage is composed of Q_{16} and Q_{17} with $Q_{13 B}$ acting as active load.
- The class AB output stage is formed by Q_{14} and Q_{20} with biasing devices $Q_{13 A}, Q_{18}$, and Q_{19}, and an input buffer Q_{23}.
- Transistors Q_{15}, Q_{21}, Q_{24}, and Q_{22} serve to protect the amplifier against output short circuits and are normally cut off.

